20199 &

o3 IoT "oy #3g
A volguolre TFY=E

SER

AR FE T4,

e-mail :

g A%
dl o] g] o] 2= B[
7

A shal

quyetict@utehy.edu.vn, kyungbaekkim@)jnu.ac.kr

Comparison of Relational Databases and Graph Databases
for Heterogeneous IoT Data Management

Van-Quyet Nguyen, Kyungbaek Kim
Dept. Electronics and Computer Engineering, Chonnam National University

Abstract
Nowadays, the Internet of Things (IoT) platforms have been widely deployed in many domains,
such as smart buildings or smart agriculture. The major challenges of these platforms are storing
and analyzing data from a huge number of ‘things’ which are highly connected to each other. This
requires IoT platforms to have flexible data models and efficient data access mechanisms to
guarantee the performance of the system. Traditional IoT platforms often use relational databases
which are mature technologies for structured data. However, using a relational database is

insufficient for handling heterogeneous IoT data (e.g.,

semi-structured, unstructured) due to

complex relationships which require multiple nested queries and complex joins on multiple tables.
Recently, graph database which is a kind of NoSQL databases, have emerged from the modern
IoT platforms. This paper presents a comprehensive comparison of relational databases and graph
databases for heterogeneous IoT data management. Through the comparison in various aspects and
the experimental results, we find that graph databases are applicable for storing and analyzing the

IoT connected data.

1. Introduction

Recent years, IoT products and services are emerging
in various IoT application areas [1][2]. They not only
but
also enhance productivity and create new added-values

make our life convenient, comfortable, and safe,

for industrial business. For example, in a smart
building, a smart evacuation system exploring data
from smart devices (e.g., smart indicator, smart

cameras, and smart sensors) can provide the efficient
routes to evacuees in an emergency situation [3]. The
devices are going to be connected in highly connected
fashion [4][5]. Choosing a proper database that supports
easy to manage and explore the connection between
‘things’ is particularly evident for heterogeneous IoT
data management.

Traditional IoT platforms often use relational
databases (e.g., MySQL, MSSQL, MariaDB) which are
well-documented and mature technologies. However,
using a relational database is insufficient for managing
IoT data (e.g.,

and unstructured) due to complex

heterogeneous structured,
semi-structured,
relationships which require nested queries and complex
it
guarantee the performance of querying massive and

joins on multiple tables. Therefore, is hard to

highly connected data in IoT applications.

Recent years, non-relation (NoSQL) databases have
emerged as a popular alternative to relational databases,
which
semi-structured data in a schema-free way. There are

allow representing unstructured and
varied types of NoSQL databases including key-value,
column-family, document, and graph databases. Among
them, graph database is one of the most popular
databases used by enterprises.

this
comparison of relational databases and graph databases
for heterogeneous IoT data management. We first
of IoT data and the

challenges of IoT data management. We then compare

In paper, we present a comprehensive

present the characteristics

relational databases and graph databases in various

aspects including data model, query performance,
transaction support, and scalability. Finally, we evaluate
their performance in querying data of real dataset
‘Gnutella’ that

Through the comparison, we find that graph databases

is an Internet peer-to-peer network.

are applicable for storing and analyzing the IoT
connected data.

2. IoT Data Characteristics and Challenges in
Data Management

20199 & FAHSt=0

This section presents the major characteristics of
IoT data of IoT data

management.

as well as challenges

2.1 Heterogeneity
With different ‘things’ in IoT depending on types

IoT
including

of devices and services, platforms
different kinds of data

semi-structured, and unstructured data. For example, in

generate
structured,

an IoT platform for smart building management, the
(e.g.,
temperature sensors, smoke sensors, cameras, etc) are

data generated from many Kkinds of devices

unstructured; meanwhile, information about people or
rooms in the building can be managed in structured
data using data tables or in semi-structured data using
XML files. Thus, how to manage heterogeneous IoT
data so that they can be easily explored in IoT

applications is considered as a challenge.

2.2 Highly Connected Data

In an Internet of Thing (IoT) environment, entities
with different attributes and capacities are going to be
connected in a highly connected fashion. Specifically,
not only the mechanical and electronic devices but also
other entities such as people, locations and applications
connected to each other. and

are Understanding

managing these connections between things are
challenges in IoT data management, which plays an

important role for businesses.

2.3 Dynamic Changes
Most IoT applications work with dynamic and
speedily changing data due to new entities are coming
online and/or the connection between these entities can
change regularly. This requires a data model to easily
represent the entities, and support adding, deleting and
updating relations between entities without impacting

application availability.

2.4 Massive Real-time Data

Massive IoT data is generated every minute through
multiple kinds of devices and services such as sensors
and social networking. For instance, a huge number of
images 1s generated in real-time through cameras in a
which
relational

is unsuitable to reside in a
(e.g., MySQL, SQL
Server). Therefore, modeling such kind of data in an

smart building,

traditional database

easy way and real-time processing are considered as
challenges.

3. Comparison of Relational Databases and
Graph Databases

3.1 Data Model

fell

Relational databases use fixed-schema by predefined
tables with rows and columns for data storage. This
makes them ill-suited for storing unstructed or
semi-structured IoT data. Meanwhile, graph databases
use schema-free by wusing graph models, in which,
nodes are used to represent entities and edges represent
the relationship between entities. This makes them easy
to describe heterogeneous data and highly connected

data.

Relational databases describe relationship between
by
one-to—-many,

things using standard relations: one-to-one,
and many-to-many. A lot of mapped
tables are generated with primary keys and foreign
keys to ensure the consistency of the data. This causes
difficulties deal with the dynamic changing
characteristics of IoT data. With graph databases,

adding and removing entities and their relations are

to

straightforward operations.

3.2 Query Performance

Query
Language (SQL) statements for accessing the data.

Relational databases use Structured
SQL language is well-defined and common in both
academic and business. However, relational databases
are not designed to handle the massive data and highly
connected data which are characteristics of IoT data in
Hence, the query performance

could be low due to the possible multiple nested queries

modern applications.

or a large number of joins from multiple tables. In
contrast, graph databases are purposely-built to store
and handle highly connected data; therefore, they can
obtain high performance in querying IoT data. The key
point that helps graph databases to achieve high
performance is applying graph traversal techniques such
as BFS and DFS. Meanwhile, relational databases use
scanning and hash matching techniques which are
costly with large tables or lots of joins. Thus, the
query performance of relational databases decreases
when increasing the number of records in tables and
(related

tables), while with graph databases, its performance

the number of relationships among tables

only decreases in relation to the number of connections
between the records (things).
3.3 Transaction Support

An important function of relational databases which
make them as the preferred choice in industries and

applications is ACID (Atomic, Consistent, Isolated,
Durable) transaction support. The ACID properties
provide a mechanism to ensure that data of a

transaction does not corrupt as a result of failure with

any reason (e.g. transaction of transferring money

20199 & EASI=US

between accounts in the bank). While most of NoSQL
databases use BASE (Basic Availability, Soft-state,
Eventual consistency) consistency model to support
transactions in their databases, current graph databases
(e.g., Neodj, OrientDB) retain ACID properties which
are required by modern IoT applications where data
reliability and consistency are essential.

3.4 Scalability

To deal with massive data, the scalability is critical
important in IoT data management. Relational databases
use vertically-scalable which means that improving the
performance of handling massive data is performed by
upgrading the storage and compute capacity (e.g., using
SSD, increasing number of CPU cores, etc) of existing
hardware in the system. Vertical scaling is typically
expensive, and the fault-tolerant of the system is not
guaranteed as a result of a single database server
failure. On the other hand, graph databases use
horizontally-scalable which means that when IoT data
is rapidly growing up, we add more resources (e.g.,
server machines) to the system for scaling storage and
improving query performance.

4. Evaluation

To compare the query performance between
relational databases and graph databases, we do an
experiment on a real-life dataset called Gnutella that is
an Internet peer—to—peer network [6]. This dataset has
62,586 nodes representing hosts in the Gnutella network
topology and 147,892 edges representing connections
between nodes, which correspond the number of records
relational database. For the relational database, we use
MySQL to design a table named “Link” with two
columns FromNodeld and 7ToNodeld to store Gnutella
dataset. For the graph database, Neo4] is used to store
the dataset, in which the relationship between two
nodes is defined with the name "CONNECT'. To
evaluate the impact of the size of dataset to the query
performance, we create a varied size of Gnutella by
cutting down data from the original one as shown in
Table 1.

Table 1. Summary of dataset

Dataset Nodes Edges (Records)
Gl 10,000 12,875
G2 20,000 29,253
G3 30,000 49,371
G4 40,000 74,481
G5 50,000 104,288
G6 60,000 138,142

We evaluate query performance for solving two
particular types of problem. The first one is “fAnding
out all connections from a given host to its
neighbours’. The second one is “finding out all
connections from a given host in four or fewer hops’,
which is a common problem in the IoT connected
networks where hosts having a large number of
connections to others could be used for some purposes
such as spreading messages. We can see that the first
problem can be done with the simple queries as shown
in Figure 1. Meanwhile, the second one requires the
complex queries, in which, relational databases need to
do multiple nested SQL queries that is illustrated in
Figure 2(a), and graph databases use a bounded
recursive query as shown in Figure 2(b). Here, we test
with the given host identity being equal to ‘60’.

Figure 3 illustrated the query performance comparison
between relational databases and graph databases with
a simple query. We observed that the simple graph
query is slightly faster than the simple SQL query. The
reason is the relational databases perform scanning all

records in the ‘Links’ table for matching with the

SELECT * FROM links WHERE FromNodelId='6@’

(a) Simple SQL Query

ATCH path = (a:Host{HostId:

RETURN path;

@'})-[CONNECT1->(b)

(b) Simple Graph Query

Figure 1. Simple queries in relational databases and

graph databases

SELECT * FROM Links WHERE FromModeId IN
(SELECT ToNodeId FROM Links WHERE FromNodeId IN
(SELECT ToNodeId FROM Links WHERE FromNodeId IN
(SELECT ToNodeId FROM Links WHERE FromNodeId

60')))
UNION
SELECT * FROM Links WHERE FromNodeId IN
(SELECT ToNodeId FROM Links WHERE FromNodeId IN
(SELECT ToNodeId FROM Links WHERE FromNodeId

n
—
~—

UNION
SELECT * FROM Links WHERE FromNodeId IN
(SELECT ToNodeTd FROM Links WHERE FromModeTd

n
—

UNION
SELECT * FROM Links WHERE FromNodeId = 'G0°

(a) Complex SQL Query

path = (a:Host{HostId:'60'})-[*1..41->(b)
RETURN path;

(b) Complex Graph Query

Figure 2. Complex queries in relational databases and

graph databases

60
Relational Database (MySQL)
= Graph Database (Neodl)
E 40
L]
E
'_
[=4
o
3 20 A
3 7
.
i
D T = ﬁ T
G4
Dataset

Figure 3. Query performance comparison between

relational databases and graph databases with a

simple query

1000
Relational Database (MySQL)
Graph Database (Neod))
. 800 -
E
o |
£ 600
[==
c
S 400 A
-
o
&
w 200 A
0 T T %_

G1 G2 G6

Dataset

Figure 4. Query performance comparison between

relational databases and graph databases with a

complex query

the
perform finding out a node with the given condition

given condition; meanwhile, graph databases

and search from that node with one hop in the graph.
However, the query performance of graph databases is
around 100 times faster than the one of relational
databases in the case of complex query, as shown in
Figure 4. It is not difficult to find that with the SQL
complex query in Figure 2(a), the ‘Links table need to
be scanned by 10 times. That is the reason for the
in

long time response of the relational databases

querying IoT connected data.

5. Conclusion
This paper presented a comprehensive comparison of

relational databases and graph databases for

heterogeneous IoT data management. We compared

them through various characteristics including data

model, query performance, transaction support, and

scalability. We also evaluated their query performance
on real IoT dataset, Gnutella. Through the comparison
in various aspects and the experimental results, we
found that graph databases are applicable for storing

and analyzing the IoT connected data.

Acknowledgement
This research was supported by Basic Science
Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning
(NRF-2017R1A2B4012559). This research was supported
by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC
Center)

(Information Technology Research
(IITP-2018-2016-0-00314)
supervised by the IITP (Institute for Information &

support program

communications Technology Promotion).

References
[1] Lee, I. and Lee, K., 2015. The Internet of Things
(IoT):
enterprises. Business Horizons, 58(4), pp.431-440.

Applications, investments, and challenges for
[2] Van-Quyet, Nguyen, et al. “Design of a Platform
for Collecting and Analyzing Agricultural Big Data.”
JDCS vol. 18, no.1, pp. 149-158, 2017.

[3] Lin, CY.,, Chu, E, Ku, LW. and Liu, J., 2014.
Active disaster response system for a smart building.
Sensors, 14(9), pp.17451-17470.

[4] Arora, Vaibhav, Faisal Nawab, Divyakant Agrawal,
and Amr El Abbadi. "Multi-representation based data
architecture [oT applications.” In
Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on, pp. 2234-2239. IEEE,
2017.
(5]
Giang-Truong Nguyen,

processing for

Van—-Quyet Nguyen, Huu-Duy Nguyen,

"A Graph
Model of Heterogeneous IoT Data Representation: A

Kyungbaek Kim,

Case Study from Smart Campus Management”, In
Proceedings of KISM Fall Conference 2018.

[6] M. Ripeanu and I Foster and A. Iamnitchi.
"Mapping the Gnutella Network: Properties of

Large-Scale Peer-to-Peer Systems and Implications for
System Design”. IEEE Internet Computing Journal,

2002.

